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Abstract—Customer baseline load estimation plays an impor-
tant role in the financial compensation settlement for incentive-
based demand response. Current studies either rely on baseline
load data from other consumers with similar load patterns or
need the manual selection of valid features. However, these
requirements are hard to satisfy in practice due to the fluctuation
and personalization of customer power consumption profiles. To
overcome this challenge, we propose a generative adversarial
network-based customer baseline load estimation method. First,
the estimation problem is converted into a time-series missing
data problem. Then, the gated recurrent unit network is adopted
to automatically distill the sequential information of historical
baseline load data. Further, we take advantage of the generative
adversarial network to recover incomplete baseline load data
through a game between the generator and discriminator. Case
studies based on a realistic dataset of building load demonstrate
the effectiveness and superiority of the proposed method.

Index Terms—Demand response, baseline load estimation,
generative adversarial network, gated recurrent unit

I. INTRODUCTION

W ITH the continuous investment in renewable energy
sources in the power system, it becomes increasingly

difficult to maintain the balance between power supply and
demand [1]. In order to guarantee the stability and reliability
of the power system, more flexible resources need to be
exploited to eliminate the uncertainty caused by renewable
energy sources. As a major power regulation measure, demand
response (DR) plays an important role in ensuring a stable and
reliable power system [2].

DR changes customers’ normal electricity consumption
patterns by reducing or shifting their electricity demand to
maintain a real-time power balance. Currently, DR is gener-
ally divided into two categories: 1) price-based DR, and 2)
incentive-based DR [3]. For the price-based DR, the system
operator issues time-varying tariffs to influence customers’
normal electricity consumption schedules. For the incentive-
based DR, the operator directly provides financial compensa-
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Fig. 1. The diagram of CBL.

tion to encourage customers to reduce their electricity demand
during peak load periods. In order to determine the adequate
financial compensation, it is necessary to accurately evalu-
ate the actual amount of load reduction by each customer,
which is the difference between the customer’s nominal power
consumption (i.e., the baseline load) in the absence of DR
and the actual power consumption with DR. However, this is
nontrivial because the consumer baseline load (CBL) cannot
be recorded during the DR periods and it relies on estimation
[4], [5]. An example of the comparison of CBL and actual
meter load is shown in Figure 1. The red curve is the CBL
and the blue curve is the actual load. In the non-DR periods,
the two values are equal; while during the DR periods, the
deviation between the two load curves is the customer’s load
reduction. However, when a DR event occurs, the CBL will no
longer exist and cannot be measured. Therefore, as the basis
for calculating demand response compensation, the accurate
estimation of CBL is critical. Too high or too low estimation
would affect the effective operation of DR [6].

In order to achieve the accurate estimation of CBLs, current
studies are mainly divided into three categories: averaging,
regression, and control group methods. The averaging method
estimates the CBL based on the average of the customer’s
historical load [7]. Since customer load is susceptible to
natural and social factors, resulting in high volatility, the



accuracy of such methods is often poor. The regression method
constructs models based on historical load, weather conditions,
time series and other factors to estimate the CBL [8]–[10].
However, these features need to be extracted manually and
their effectiveness is difficult to measure, so the robustness
and generality of these methods cannot be guaranteed. For
the control group method, all customers are divided into the
DR group and non-DR group [4], [11]. Loads of the non-DR
group are used to estimate the CBL of the DR group in the DR
periods. This approach assumes that both groups of customers
have similar electricity consumption patterns during the same
periods, which may be not true in practice.

As mentioned above, the CBL does not exist and cannot be
measured when the consumer is involved in DR. Therefore,
we can treat the CBL during the DR period as missing
data. Considering that electricity load is typically time-series
data, we can then regard the CBL problem as a time-series
missing data problem. Thus, estimating the CBL is equivalent
to recovering the missing data. For the time-series missing data
problem in the power system, there are some deep learning-
based methods that have been studied recently. For example,
Deng et al. [12] applied the long short-term memory (LSTM)
for type recognition and time location of power quality dis-
turbances. Zang et al. [13] proposed a novel method based
on LSTM to forecast the day-ahead residential load. For the
time-series data recovery problem, Jeong et al. [14] utilized the
mixture factor analysis method to impute the missing values
in building load data. However, there are few studies on time-
series data recovery for baseline load estimation. Wang et al.
[15] proposed a SAE-based method to recover the residential
CBL, but the reconstruction performance is vulnerable due to
the pseudo-load pool.

To overcome the aforementioned challenge, we propose
a novel CBL estimation method based on the generative
adversarial network (GAN) [16], which has recently been used
for scene generation in the power system [17]. The main
contributions of this paper are summarized as follows:

1) A GAN-based data recovery approach is proposed for
CBL estimation. This method transforms the CBL esti-
mation problem into a time-series data recovery issue.
Through the complete data generated by GAN, the CBL
with missing data in the DR period is recovered, which
is equivalent to realizing CBL estimation.

2) The gated recurrent unit network is deployed in GAN
as the base model. The network extracts the temporal
relationships of the CBL without manual operation, which
enables the proposed method to have high robustness.

The remainder of this paper is organized as follows. In
Section II, the framework and details of the proposed method-
ology are elaborated. The effectiveness of the proposed method
is validated by numerical experiments in Section III. Finally,
Section IV concludes this paper.

II. PROPOSED METHODOLOGY

The proposed data-driven method is based on the generative
adversarial network and the recurrent neural network. In this
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Fig. 2. The structure of GAN.

section, we first elaborate the principles and details of these
two networks, and then describe the model architectures and
baseline load estimation workflow.

A. Generative Adversarial Network

Generative models in machine learning algorithms are used
to create new samples that have the same statistical properties
as the dataset [16]. Since the explicit pattern features of the
dataset cannot be extracted, there is no specific error metric
for judging the validity of the generated samples. In addition,
traditional methods face difficulties in approximating some
probability calculations. GAN effectively solves the above
problems by a zero-sum game between two sub-models called
generator and discriminator, respectively.

The structure of GAN is shown in figure 2. The generator is
used to generate new data samples that match the training data
distribution. It is a model that maps input vector (e.g. noise,
incomplete sequences, etc.) to the training dataset space, and
is usually implemented by a deep neural network. We denote
a prior distribution as pz(z) for the input vector z, then define
the mapping to training dataset space as G(z; θg), where G is
a differentiable function represented by a deep neural network
with parameter θg . The objective is to make the generator’s
distribution pg over training data as close to the training dataset
distribution pdata as possible, as follows:

minKL(pdata||pg), (1)

where KL is the Kullback–Leibler divergence and has a value
of 0 if and only if pdata = pg .

The discriminator distinguishes whether a sample is real
data or generated data. It is similar to a binary classifier that
determines the realistic degree of input samples, and is also a
deep neural network. We define a model D(x; θd) that outputs
a single scalar, where θd is the model parameter and D(x)
represents the probability that x is from pdata rather than pg .
The objective of the discriminator is to assign correct labels
to both the training data and the generated samples.

Based on the above objectives, the general loss functions
of the generator and discriminator are formulated with value
function V (G,D), respectively, as follows:

min
G

V (D,G) = Ez∼pz(z)[log(1−D(G(z)))], (2)

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].
(3)
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Fig. 3. The architecture of GRU cell.

As D(x) is the probability that the input sample x comes
from the real data distribution, the closer D(G(z)) is to 1, the
more similar pg is to pdata, i.e., it satisfies Eq. (1).

Since the discriminator tries to distinguish the real samples
from the generated ones, and the goal of the generator is to fool
the discriminator so that it cannot distinguish, a competitive
adversarial relationship is formed. We combined Eq. (2) and
Eq. (3) to formulate the following two-player minimax game:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].
(4)

By training the generator and discriminator simultaneously,
they are made to play against each other in a zero-sum game,
and the training process is iterated until the Nash-equilibrium
point is reached. At this point, the discriminator can no longer
distinguish between the real data and the samples generated
by the generator, which means that the distribution of the two
types of data is consistent, i.e., pg = pdata.

As mentioned before, G(z; θg) and D(x; θd) are model
parameters of the deep neural network, thus gradient-based
learning rules can be exploited to optimize their performance.
Further, in order to capture the temporal relationship of con-
sumer baseline load, we choose the recurrent neural network
(RNN) as the base model, which is introduced in detail in the
following section.

B. Gated Recurrent Unit Network

RNNs are a class of neural networks with short-term mem-
ory capability that can process time-series data [18]. Unlike
feedforward neural networks in which the output of the net-
work depends only on the current input, the outputs of an RNN
not only depend on the current input, but also are influenced
by their own historical information, forming a closed-loop
structure to realize the memory function. However, due to
the gradient explosion or gradient disappearance phenomenon,
RNNs can actually only learn the dependencies between
short-term states, which is called the long-term dependencies
problem. The gated recurrent unit (GRU) network is a variant
of RNN, which effectively solves the long-term dependencies
problem by introducing the gating mechanism to control the
accumulation rate of information [18]. Figure 3 illustrates the
architecture of GRU.

In the GRU, the reset gate rt adjusts the combination of the
current input xt and the previous state ht−1 to calculate the
current candidate state h̃t:

rt = σ(Wrxt +Urht−1 + br), (5)

h̃t = tanh(Whxt +Uh(rt ⊙ ht−1) + bh), (6)

where Wr, Wh are the input weight matrices, Ur, Uh are
the hidden weight matrices, and br, bh are the bias vectors.
Symbols σ and tanh are nonlinear activation functions, and
symbol ⊙ denotes the element-wise multiplication.

In addition, the update gate zt is used to control the balance
between input and historical information, which is defined as:

zt = σ(Wzxt +Uzht−1 + bz), (7)

where Wz , Uz are the input and hidden weight matrices,
respectively, and bz is the bias vector.

Combining Eqs. (5)–(7), the current state ht of GRU is
expressed by:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t. (8)

It can be seen that GRU exploits zt to control the informa-
tion that the current state needs to retain from ht and needs
to accept from h̃t. When zt = 0, ht is only related to xt and
irrelevant with ht−1; When zt = 1, ht is equal to ht−1 and
independent of xt.

Compared with LSTM, GRU has a simpler structure, lower
computational complexity and fewer parameters, which can
get similar or even better results with fewer training times.
Therefore, we adopt GRU as the base network for the gener-
ator and discriminator.

C. Model Architecture

Our proposed method is inspired by the GAN and GRU. The
generator utilizes the GRU to compress the input incomplete
time series x into a low-dimensional vector. Then it uses
this vector to generate a complete time series x′ hoping to
fool the discriminator. While the discriminator adopts the
GRU to distinguish between real sequence x and the fake
sequence x′. They are trained through a min-max game and
eventually generate new samples that follow the distribution
of the training dataset.

The architecture of the generator in the proposed method is
shown in Fig. 4. The generator first consists of a GRU layer to
learn the temporal relationship of the input time series x. Then
a fully connected layer is stacked to the last hidden state of
GRU to generate the new complete time series x′. In order to
distinguish between fake and real samples, the discriminator
is also composed of a GRU layer and a fully connected layer.
Furthermore, the output of the discriminator is restricted to
between 0 and 1 using the sigmoid activation function σ, since
the output is a probability indicating the degree of truth.
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Fig. 4. The illustration of the generator in our proposed method.

D. Baseline Estimation Workflow

1) Data Preparation: We use symbol p to represent the
actual load of the consumer for a day, which is expressed as:

p = [p1, p2, . . . , pT ] (9)

where pt is the actual metered load during time interval t, and
T is the number of time intervals in a day (e.g., 24, 48, or 96,
depending on the time granularity).

When there is no demand response event, the CBL is equal
to the actual load, but when the consumer is involved in DR,
its CBL is not equal to its actual load. We consider the data
of CBL during the DR periods to be missing and replace the
corresponding values with zero, so the metered CBL x can be
expressed as:

xt =

{
pt, t ∈ TNDR

0, t ∈ TDR

, (10)

where TDR and TNDR denote the DR and non-DR periods.
Since the metered CBL x may be incomplete, we introduce

a mask vector m to represent whether each value of x exist
or not, defined as follows:

mt =

{
1, t ∈ TNDR

0, t ∈ TDR

. (11)

2) Training Process: Both the input and output of the
generator are time series, and we want them to be as close as
possible during the non-DR periods. To avoid the generator
degenerating into a simple mapping, we add noise to the
input x and then obtain the generated data x′, which can be
formulated as:

x′ = G(x+ η), (12)

where η is the random noise sampled from a standard distri-
bution, and it has the same size as the input x.

Considering that the generator is designed to generate x′

similar to x, not only their distributions should be the same,
but also their specific values should be close. Therefore, the
squared error loss is added to the loss function as follows:

LG = ∥m⊙ x−m⊙ x′∥2 −D(x′), (13)

Algorithm 1: The detailed training process of GAN
Input : Parameters of generator and discriminator θG,

θD, batch size B, iteration steps of generator
and discriminator k1, k2

Output: Updated parameters of generator and
discriminator θ′G, θ′D

1 Procedure:
2 for total training iterations do
3 for k2 steps do
4 Sample minibatch of B data {x(1), . . . ,x(B)}

from training dataset;
5 Generate fake data {x′(1), . . . ,x′(B)};
6 Update the parameters of discriminator θ′D by

its gradient ∇θDLD;
7 end
8 for k1 steps do
9 Sample minibatch of B data {x(1), . . . ,x(B)}

from training dataset;
10 Calculate the data mask {m(1), . . . ,m(B)};
11 Generate the fake data {x′(1), . . . ,x′(B)};
12 Update the parameters of generator θ′G by its

gradient ∇θGLG;
13 end
14 end

where ∥·∥2 represents the 2-norm.
In addition, we want the discriminator to output a high

probability for x and a low probability for x′, so its loss
function can be designed as:

LD = D(x′)−D(x). (14)

Based on Eqs. (13)–(14), we iteratively optimize the gener-
ator and discriminator, and finally reach the equilibrium under
the adversarial framework. The training details are shown in
Algorithm 1.

For an incomplete sequence x, we utilize the well-trained
generator to generate a complete sequence x′, and fill in the
missing values of x with the corresponding values of x′. The
complete CBL xnew can be expressed as follows:

xnew = m⊙ x+ (1−m)⊙ x′. (15)

In summary, we first convert the CBL data to the missing
form, then implement the generator and discriminator using
GRU and train them by adversarial games. Finally, the CBL
estimation is accomplished by merging the generated sequence
and the original sequence.

III. CASE STUDIES

A. Experiment Settings

1) Dataset Description: The experiments are conducted
on a dataset of buildings in Zhuhai, China. The dataset
contains 30 office buildings and hotels, from November 2020
to October 2021 with 30-min granularity.



TABLE I
TRAINING PARAMETERS

Parameter Description Value
B The batch size 16
E The number of epochs 100
η The learning rate 0.001

Optimizer The learning algorithm Adam
LG The loss function of generator Eq. (13)
LD The loss function of discriminator Eq. (14)

We integrate the 24-hour load of a building (i.e., 48 data
points) into a complete CBL sequence. The DR events are
simulated by randomly replacing the load with 0 between
14:00 to 19:00. The proportion of DR-event sequences is 20%.

2) Benchmarks and Metrics: To verify the effectiveness of
the proposed method, we choose four benchmarks for compari-
son: 1) averaging method: Low5of10, Mid4of6 and High5of10
[7]; 2) regression method: support vector regression (SVR)
[9]. In addition, the mean absolute error (MAE) and mean
absolute percentage error (MAPE) are adopted to measure the
performance of CBL estimation.

3) Environmental Setup: The proposed method is imple-
mented by an open-source machine learning framework Py-
Torch1. The parameters of the training process are listed in
Table I. All the experiments are conducted on a desktop with
Intel(R) Core(TM) i7-9700 CPU and NVIDIA GeForce RTX
2080TI GPU (64GB RAM) on a Windows 10 platform.

B. Performance and Comparison of CBL Estimation

In this part, we demonstrate the effectiveness of the pro-
posed method based on the estimation performance on the
two types of buildings. Furthermore, the superiority of our
proposed method is also validated by comparing it with the
abovementioned four benchmarks.

Figure 5 shows the CBL estimation results of our proposed
method, where the figures 5(a) and 5(b) are for commercial
buildings and the figures 5(c) and 5(d) are for hotels. It
can be seen that our method has a high estimation accuracy
for commercial buildings, and the estimation CBLs (i.e., red
curves) are approximately close to the actual CBLs (i.e., blue
curves) at all times except for some fluctuating cases. As for
hotels, the performance is relatively poorer due to the higher
uncertainty of load profiles. Nevertheless, both the estimated
and actual CBLs follow essentially a similar trend. It is worth
noting that our method estimates the CBL not only for DR
periods but also for non-DR periods. When we adopt Eq.
(15) to restore the complete CBL, the recovery performance is
further improved since the estimation error in non-DR periods
is eliminated. In addition, the well-trained generator will not
be disturbed by the zero values during the DR period, although
the differences between the zero values (i.e., gray curves) and
the corresponding actual CBL (i.e., blue curves) are large. This
indicates that our proposed method is robust.

1PyTorch: https://pytorch.org/
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Fig. 5. The CBL estimation results by our proposed method.



TABLE II
PERFORMANCE COMPARISON BETWEEN BENCHMARKS AND THE

PROPOSED METHOD.

Method Commercial Building Hotel
MAE(MW) MAPE(%) MAE(MW) MAPE(%)

Low5of10 0.5617 9.3251 0.6639 13.6831
Mid4of6 0.4601 8.3934 0.5925 11.6320

High5of10 0.5377 9.1890 0.6166 12.7601
SVR 0.3529 6.7035 0.4868 8.9638

Proposed 0.2703 5.4162 0.3221 7.3563

We calculate the average performance metrics of our method
and the four benchmarks for two types of buildings, shown in
Table III-B. The averaging methods, i.e., Low5of10, Mid4of6,
and High5of10, directly use average values of historical loads
for CBL estimation without considering the volatility and
randomness of the load. As a result, their estimation errors
are all larger than those of the other two methods. Their
smallest MAPE is still over 8%. Compared with the averaging
methods, the performance of the SVR method is improved, and
the minimum MAE is close to 0.35MW. However, the SVR
method still has certain errors because the relationship between
load and other factors is difficult to accurately describe. In
comparison, our proposed method is apparently superior to
the other methods for both commercial buildings and hotels,
with a minimum MAPE of less than 5.5% and a maximum
MAPE of only around 0.3WM.

IV. CONCLUSION

In this paper, we focus on the CBL estimation problem
for DR. In order to overcome the shortcomings of existing
methods, we propose a novel CBL estimation method based
on GAN. We transform the estimation problem into a time-
series data recovery problem, and use the GRU as the basic
model to deal with time-series relations. The missing CBLs are
restored through the well-trained generator, which is obtained
by the adversarial game training. Our method can perform the
accurate CBL estimation by filling the generated CBLs into
the original incomplete sequence. Case studies indicate that
the generated CBL by our method is closer to the real CBL
than other benchmarks, which validates its effectiveness and
superiority.
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