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Abstract—Heating, ventilation, and air conditioning (HVAC)
systems in buildings have great potential to provide regulation
capacity that is leveraged to maintain the balance of supply and
demand in the power system. In order to make full use of HVAC’s
regulation capacity, it is important to accurately evaluate it
ahead of time. Because physical model-based approaches are hard
to implement and highly personalized for each building, data-
driven approaches are preferable for this capacity evaluation.
However, given the insufficient data for individual buildings and
buildings’ potential unwillingness to share their data because of
privacy concerns, it is extremely challenging to build a high-
performance data-driven regulation capacity evaluation model.
In this paper, we propose a privacy-preserving framework that
combines federated learning and transfer learning to evaluate
the regulation capacity of HVAC systems in heterogeneous
buildings. Specifically, a classified federated learning algorithm is
proposed to build capacity evaluation models of HVAC systems
for different building types. Each building trains its model locally
without sharing data with other buildings to preserve privacy.
The algorithm also tackles data insufficiency and achieves high
evaluation accuracy. In addition, we design a cross-type transfer
learning algorithm to enhance model generalization and further
address data deficiency. A protocol is created for the above two
algorithms to protect privacy and security. Finally, numerical
case studies are conducted to validate the proposed framework.

Index Terms—Demand response, federated learning, HVAC
system, privacy-preserving, regulation capacity, transfer learning

I. INTRODUCTION

W ITH the increasingly high penetration of renewable
energy sources (RES), the uncertainty of power system

generation has greatly increased owing to the high unpre-
dictability and volatility of RES [1]. Therefore, more flexi-
ble regulation capacities are needed to maintain the system
supply–demand balance [2]. With the phasing out of conven-
tional flexible generating units (e.g., thermal generators and
gas turbines), demand response is gaining more attention for
providing regulation capacity in power system operation and
has already been adopted by leading countries worldwide [3].
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Fig. 1. Diagram of an aggregator coordinating multiple buildings.

Heating, ventilation, and air conditioning (HVAC) systems
in buildings have great potential to furnish regulation capacity
[4] because they account for a large share of total electricity
consumption, (e.g., over 40% in many cities in the world) in
addition to having the thermal inertia to keep comfort levels
within acceptable limits during regulation [5]. In addition, the
automation devices that are already present in the system can
be utilized to reduce infrastructure costs and realize intelligent
remote control. Furthermore, owing to the large number and
wide distribution of HVAC systems, an aggregator is usually
exploited to integrate and regulate the capacities of many
buildings together, and participates in the electricity market
as an agent representing all of the buildings [6], as shown
in Fig. 1. In an electricity market, the aggregator usually
needs to provide a regulation capacity offer in advance. Then,
during real-time operations, if the aggregator fails to provide
the regulation services as it promised, it may be penalized or
even expelled from the market [7]. Hence, it is critical for the
aggregator to accurately evaluate the regulation capacity of all
HVAC systems in buildings ahead of time.

However, accurate regulation capacity evaluation can be
challenging because precisely modeling HVAC systems is
difficult. Fabietti et al. [8] proposed a model-predictive control
(MPC) framework to determine the regulation capacity of
commercial buildings and provide frequency regulation ser-
vices for the Swiss electricity market. Pavlak et al. [9] com-
bined the zone temperature setpoint perturbation method with
MPC to evaluate the hourly regulation capacity of commercial
buildings in the ancillary service market. Ali et al. [10] derived
a building thermodynamic model and then proposed a mathe-
matical formula to evaluate the capacity of its HVAC system.
Further, Lu [11] applied a simplified equivalent thermal model
for simulating residential HVAC units. Goddard et al. [12]
developed a single-state variable system model for HVAC
systems to predict power consumption and evaluate regulation
capacity. The above studies relied on precise physical models
to determine the regulation capacity of HVAC systems in
buildings. These models usually include a large number of
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parameters, some of which are often difficult or even impossi-
ble to estimate. In addition, the building indoor temperature is
influenced by various factors, including heat transfers across
buildings and heat gains from the environment, which are
computationally expensive to model. Thus, it is difficult to
apply physical-model-based methods for regulation capacity
evaluation of HVAC systems in heterogeneous buildings.

To overcome the aforementioned challenges, recently, re-
searchers have widely used data-driven model-free methods.
As such, some researchers have proposed supervised learning
approaches. For example, Javed et al. [13] presented a random
neural-network-based smart controller to estimate room heat
consumption and then control the HVAC system. Kim [14]
utilized artificial neural networks for HVAC system modeling
in a multi-zone building and then used it to ensure thermal
comfort and cost-effective operation. Some other researchers
have adopted reinforcement learning (DRL) algorithms. For
example, Yu et al. [15] and Li et al. [16] adopted DRL to
tackle uncertainties of HVAC system operations and elec-
tricity prices, respectively. Yu et al. [17] extended single-
agent DRL to multi-agent DRL with an attention mechanism,
enabling unified control of multiple HVAC systems. These
data-driven approaches require sufficient high-quality historic
data for training. However, this can be challenging in practice,
especially for new buildings or those without proper metering
systems.

To resolve the problem of some buildings not having
sufficient data for data-driven regulation capacity evaluation,
two possible approaches can be used: 1) sharing the data across
different buildings to train a high-performance global model
that can be used for all buildings; 2) applying well-trained
models from buildings with sufficient data to those without
sufficient data. For the first approach, it is common practice to
use a central entity to collect data from all buildings and carry
out training processes. However, buildings may be unwilling to
share their data owing to privacy concerns. To protect privacy,
researchers have proposed federated learning, which allows
users to collaboratively train a global model without sharing
data, only exchanging gradients or model parameters [18].
Several studies have exploited federated learning in power
systems for electricity consumer characteristics identification
[19], solar generation disaggregation [20], and distributed
energy resources forecasting [21]. For the second approach,
transfer learning [22] is usually adopted, which transplants
knowledge learned from one domain to another domain based
on similarities in data, tasks, or models between domains.
Therefore, it is possible to obtain a high-performance model
with little or even no data in some buildings by exploiting
the well-trained model from other buildings. There has been
some research utilizing transfer learning in power systems,
such as nonintrusive load monitoring, wind power prediction,
and power system security assessment [23]–[26].

However, the above two approaches can not address our
problem well individually. First, owing to the FedAvg algo-
rithm of federated learning, the global model may not reflect
the differences between HVAC systems in heterogeneous
buildings, which may lead to performance degradation [18],
[27]. Second, the prerequisite for transfer learning to be able

to transfer knowledge is to have well-trained models from
other buildings. However, developing a well-trained model
may already face data deficiency and privacy issues.

To fill the aforementioned research gap, we propose a
privacy-preserving deep learning framework that combines
federated learning and transfer learning to train a data-driven
model for regulation capacity evaluation of HVAC systems
in heterogeneous buildings. Compared with the published
literature, the main contributions of this paper are threefold:

1) A classified federated learning algorithm is designed
to build high-performance evaluation models for HVAC
system regulation capacity by leveraging data from mul-
tiple buildings. According to the designed identification
scheme, each model is only trained by data from one
type of buildings. Compared with traditional federated
learning methods to obtain a global model of all build-
ings, each type of buildings receive a personalized model
through the proposed algorithm. The personalized model
avoids performance degradation due to model overgen-
eralization, which is caused by the use of data from
excessively heterogeneous buildings.

2) A cross-type transfer learning algorithm is developed
to further improve the performance of models that are
trained by the classified federated learning algorithm. For
building types that all buildings have the issue of insuffi-
cient data, this algorithm enhances their model accuracy
by transplanting knowledge from the well-trained models
of other building types. Further, it also makes up for
inadequate model generalization, allowing the model to
be applied to other buildings.

3) A novel protocol is created for the above two algorithms
to protect the privacy of building data and model parame-
ters during the training processes. It also contains a secure
transmission scheme that can guarantee communication
security and provide identity authentication. Further, each
building processes data locally, which effectively pre-
serves the privacy of the building’s data.

The rest of this paper is organized as follows. In Section
II, the problem background, threat model, and design goals
in this work are introduced. The preliminary and technical
details of the proposed method are elaborated in Sections III
and IV. In Section V, the effectiveness of the proposed method
is validated by numerical experiments. Finally, Section VI
concludes this paper.

II. PROBLEM STATEMENT

In this section, we introduce the problem of regulation
capacity evaluation, the security and privacy threat model, and
the design goals in this paper.

A. Regulation Capacity Evaluation

We consider an aggregator coordinating a group of hetero-
geneous buildings in this paper. Each building evaluates its
regulation capacity in advance, and then the aggregator aggre-
gates these regulation capacities and represents buildings when
bidding in the regulation market. We assume that buildings
have some historical data on power load profiles and regulation
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capacities. Suppose that the regulation capacity at time t is yt,
and because the bid needs to be made in advance, we denote
the feature vector used to evaluate yt as xt−n (we set n = 1
in this paper for the 1-hour-ahead evaluation). Therefore, we
utilize a data-driven model to evaluate the regulation capacity
of HVAC systems in buildings via regression:

yt = f(xt−n; θ), (1)

where f(·; θ) is the evaluation model with parameters θ.
However, accurately evaluating buildings’ regulation capac-

ities ahead of time is challenging. On the one hand, some
buildings may not have sufficient historical data owing to the
low quality of data collection, and the data requirements of the
model also increase as the problem becomes more complex
and difficult. Therefore, it is difficult to accurately evaluate
the regulation capacity through an individual building’s data,
according to Eq. (1). This insufficient data problem may
be tackled by collecting multiple buildings’ data for joint
model training. However, on the other hand, different buildings
belong to different entities, so they may be unwilling to share
their data with the aggregator or each other because it may
lead to the disclosure of their privacy.

B. Threat Model

The security and privacy threats considered in this paper
may come from both the internal system and the external
world, primarily against building data and model parameters.

1) Threats from the internal system: Within the system, we
assume that the cloud server (i.e., the aggregator in this paper)
is a semi-honest party that performs the given tasks honestly
but is curious about building data and model parameters. In
addition, it is assumed that all buildings are also honest but
curious; that is, they complete their work as specified but
also attempt to access data from other buildings. This may
be because most buildings do not have sufficient data to train
a high-performance model of their own.

2) Threats from the external world: For threats from out-
side, we take malicious eavesdroppers into consideration as
the primary attackers, who may intercept the communication
channels to access the model parameters or even make reverse
inference about the building data.

C. Design Goals

Based on the aforementioned background and threat model,
the proposed framework should have the following objectives.

1) Accuracy: The devised framework should be able to
build a data-driven model that can accurately evaluate the
capacities of the HVAC systems in heterogeneous buildings.
The framework also needs to overcome the limited data of
buildings, which leads to low model accuracy.

2) Generalization: Considering that heterogeneous build-
ings are involved in training processes, the model needs
to have adequate generalization. This means that the model
can accurately evaluate regulation capacity for all buildings
involved in its training processes and even new ones (whose
data are not available). However, the excessive pursuit of
generalization may lead to a decrease in model accuracy. The

proposed framework should properly balance model accuracy
and generalization.

3) Privacy: The proposed framework needs to meet privacy
requirements, which means that its data cannot be compro-
mised and model parameters cannot be accessed without
permission. If privacy issues are not safeguarded, buildings
may be reluctant to participate in the collaborative training
processes, and the capacity evaluation model may not be built
correctly.

III. PRELIMINARIES

In this section, we briefly introduce some preliminaries
about the federated learning and transfer learning algorithm.

A. Federated Learning

The federated learning algorithm aims to build a machine
learning model, which collaboratively trains the model by
different participants. Each participant utilize some data to
train a local model, and the data are stored and processed
locally during the training process. The collaborative training
exchanges model-related information (parameters or gradients
of the local model) rather than raw data, so the data privacy
is protected. The goal of the federated learning algorithm can
typically be expressed as minimizing the following objective
function [18].

min
ω

F (ω),where F (ω) :=

K∑
k=1

pk · Fk(ω), (2)

where K is the total number of participants; pk is the weight
of the k-th participant, pk ≥ 0 and

∑
k pk = 1; Fk is the local

objective function of the k-th participant.
In addition, to ensure that model-related information is not

compromised through Eq. (2), the information is encrypted by
the encryption algorithm, and then transmitted and exchanged
between participants. The model built by the federated learning
algorithm should be able to closely approximate the perfor-
mance of the ideal model, which is a machine learning model
directly trained by gathering all data.

B. Transfer Learning

Transfer learning can take advantage of the similarity be-
tween data, tasks, or models to improve the model perfor-
mance in a new domain (termed the target domain) based on
the knowledge learned from an old domain (termed the source
domain). Specifically, the model learned in the source domain
is transplanted to the target domain to help accomplish the
corresponding task [28]. Before giving the formal definition
of transfer learning, we define the domain and the task. A
domain D consists of two parts: a feature space X and a
marginal distribution P (X) of a possible feature vector X;
thus, D = {X , P (X)}. The symbol X is the space of all
feature vectors, and the symbol X denotes an instance set of
feature space, where X = {x|xi ∈ X , i = 1, . . . , n}. For a
given domain D, a task T is defined by two parts: a label
space Y and a decision function f (i.e., y = f(x)); thus,
T = {Y, f}. The symbol Y is the set of all labels, and the
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Fig. 2. The privacy-preserving framework with federated learning and transfer
learning.

symbol f is learned from the feature vector and label pairs
{(xi, yi)|xi ∈ X , yi ∈ Y, i = 1, . . . , n}.

Given a source domain Ds with a corresponding source task
Ts and a target domain Dt with a corresponding target task
Tt, the transfer learning algorithm utilizes the knowledge from
Ds and Ts to improve the performance of the target decision
function ft, where Ds ̸= Dt or Ts ̸= Tt. As such, the transfer
learning algorithm learns ft using the source domain data, so
the decision loss of ft in the target domain is the smallest, as
follows:

f∗
t = argmin

ft

Ex∈Xs,y∈Ys
L(ft(x), y), (3)

where f∗
t is the optimal target decision function, and L is the

loss function, which measures the decision discrepancy.

IV. PROPOSED METHODOLOGY

In this section, we expound on our proposed framework
that combines federated learning and transfer learning. In the
following sections, B = {Bi|i ∈ I = {1, 2, . . . , I}} denotes
the set of buildings, where Bi is the set of building of type
i. Symbol bi,j ∈ B denotes an arbitrary building, where i
indicates its building type, and j ∈ Ji = {1, 2, . . . , |Bi|} is
the index of this building in its type. Symbol Ki ⊆ Ji denotes
the set of buildings that participate in collaboration.

A. Framework Overview

The framework in this paper roughly consists of one classi-
fied federated learning algorithm and one cross-type transfer
learning algorithm, and it can preserve privacy and security,
as shown in Fig. 2. When the data of a certain building are
insufficient or missing, the evaluation model can be trained
using data information from other buildings of the same type
via the classified federated learning algorithm. Moreover, if
there are no similar buildings of the same type or all buildings
in a type do not have sufficient data, the cross-type transfer
learning improves the performance of the model, by leveraging
models of other types of buildings whose data are sufficient.

In this paper, a model is considered as a high-performance
one if: 1) it has high accuracy that not only the discrepancy
between the evaluated value and the real value is small, but
also all the evaluated values are relatively stable; that is,
all of them are close to the corresponding real values; and
2) it has high generalization, which means it can make an
accurate evaluation for unknown samples that are not involved
in training or even from new buildings.

There are mainly three types of entities in the framework:
the trust authority, the cloud server, and the buildings.

1) Cloud Server: The cloud server undertakes the initial-
ization, aggregation, and distribution of model parameters. By
aggregating the local model parameters from each building,
the cloud server eventually obtains a comprehensive model,
which is then sent back to the buildings. Note that the cloud
server does not have data to train the model.

2) Buildings: Each building has an HVAC system and may
have some historical data to exploit. Thus, the building is in
charge of training a local regulation capacity evaluation model
through its data and updating parameters of the local model
by interacting with the cloud server. Furthermore, with the
coordination of the cloud server, the models of the same type
of buildings are identical after aggregation.

3) Trust Authority: The trust authority is responsible for
the initialization of the secure privacy-preserving protocol,
which generates the public key and private key for the Paillier
cryptosystem and establishes secure communication channels
between each building and the cloud server. In addition, it also
distributes the tag, which is used to identify the building type,
to others. Furthermore, the trust authority is assumed to be a
fully trusted third party, which does not pose any threat to the
framework.

B. Classified Federated Learning Algorithm

The classified federated learning algorithm connects multi-
ple buildings to collaboratively train high-performance regu-
lation capacity evaluation models. Unlike traditional federated
learning, the proposed algorithm train a personalized model
for each building type. We classify buildings according to
their usage types, such as office, hotel, and other commercial
buildings. HVAC systems in different types of buildings usu-
ally have different regulation characteristics considering that
they have different building structures, daily social activities,
and load patterns. The whole process of the algorithm has five
stages (see Algorithm 1).

1) System Initialization: In the first stage, the trust au-
thority establishes secure communication channels between
each building and server and produces the public key PK
and private key SK for privacy-preserving federated learning
according to the Paillier cryptosystem (see details in Section
IV-D1). Then, the cloud server initializes regulation capacity
model parameters ω(0) and determines some other parameters
related to model training, such as the local batch size LB,
local training epoch LE, loss function L, learning rate η,
and optimizer Ψ. The above parameters are assigned to each
building so that the local training settings are identical for
each building and ω

(0)
i,j = ω(0). In addition, the communication
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Algorithm 1: Classified Federated Learning with
Privacy-Preserving

Input : Participating building index set {Ki|i ∈ I}, data
resources for all participating buildings
{Di,j |j ∈ Ki}.

Output : The capacity evaluation model.
1 Initialization:
2 Generate the key pair {PK,SK} = KeyGenerate();

Initialize the model parameters ω(0) and other parameters
LB,LE,L, η,Ψ; Determine the communication round Rc;
Report the data size |Di,j | to the cloud server; Calculate
contribution weight αi,j for each building, where
αi,j = |Di,j |/

∑
j∈Ki
|Di,j |.

3 Procedure:
4 for i ∈ I, j ∈ Ki do
5 Set ω(0)

i,j = ω(0) and other parameters with
LB,LE,L, η,Ψ;

6 end
7 Set r = 0;
8 while r < Rc do
9 For Buildings:

10 for i ∈ I, j ∈ Ki do
11 Perform local training with local data Di,j as per

Algorithm 2 and obtain updated parameters (ω
(r)
i,j )

′
;

12 Encrypt (ω(r)
i,j )

′
and get encrypted parameters ci,j

by Eq. (10), where ci,j = FedEncrypt((ω
(r)
i,j )

′
);

13 Upload ci,j to the cloud server;
14 end
15 For Cloud Server:
16 Aggregate ciphertexts by type and obtain aggregated

encrypted parameters ci = FedAggregate(ci,j),
according to Eq. (11);

17 Send ci back to bi,j ;
18 For Buildings:
19 for i ∈ I, j ∈ Ki do
20 Decrypt ci and get the aggregated model parameters

ω
(r+1)
i,j = FedDecrypt(ci), according to Eq. (12);

21 Update the local model parameters by ω
(r+1)
i,j ;

22 end
23 r ← r + 1;
24 end

round Rc is defined by the cloud server as the total number of
interactions between buildings and the cloud server. Finally,
the cloud server calculates the corresponding contribution
weights αi,j for each building based on the local training
dataset Di,j , where αi,j = |Di,j |/

∑
j∈Ki

|Di,j |.
2) Local Model Training: After receiving the initial model

parameters ω(0) and other parameters LB, LE, L, η, Ψ from
the cloud server, the building begins to train the regulation
capacity evaluation model using its own data. For the r-th
round, the building bi,j calculates the model gradient and
updates its parameters ω

(r)
i,j . After this round of local training,

the model parameters are updated to (ω
(r)
i,j )

′
. The details of

the local training are summarized in Algorithm 2.
We select the quadratic loss function to quantify the dis-

crepancy between the real regulation capacity and the eval-
uated regulation capacity. Furthermore, we choose the Adam
algorithm for model optimization [29], which uses momentum
as the direction of the parameter update and also adaptively

Algorithm 2: Local Model Training

Input : Local model parameters ω
(r)
i,j , local data Di,j , local

batch size LB, local epoch LE, optimizer Ψ.
Output : Local updated model parameter (ω(r)

i,j )
′
.

1 Initialization:
2 Divide Di,j into batches by LB; Set epoch = 1;
3 Procedure:
4 while epoch <= LE do
5 for each batch of data do
6 Compute loss L and gradient ∇

ω
(r)
i,j

L;

7 Update the parameters using the Adam algorithm,
according to Eqs. (4)–(8):
ω

(r)
i,j ← ω

(r)
i,j − ηΨ(∇

ω
(r)
i,j

);

8 end
9 epoch← epoch+ 1;

10 end
11 (ω

(r)
i,j )

′
← ω

(r)
i,j ;

adjusts the learning rate, as follows:

ut = γ1 · ut−1 + (1− γ1) · ∇t, (4)

vt = γ2 · vt−1 + (1− γ2) · ∇t ⊙∇t, (5)

ût =
ut

1− γt
1

, (6)

v̂t =
vt

1− γt
2

, (7)

ωt = ωt−1 −
η√

v̂t + ϵ
· ût, (8)

where ∇t denotes the gradient at iteration t; ut and vt
are the first and second moment estimates of the gradient,
respectively; γ1 and γ2 denote two exponential decay rates; ⊙
is the element-wise multiplication; ωt is the model parameters
at iteration t; η denotes the learning rate; and ϵ is a small
constant to maintain numerical stability.

3) Encryption and Transmission: After the local training
and model parameters update, the building bi,j encrypts its
model parameters (ω

(r)
i,j )

′
based on the FedEncrypt function

to generate the ciphertext ci,j (i.e., the encrypted model
parameters). Then, ci,j is uploaded to the cloud server.

4) Classified Aggregation: The cloud server aggregates the
received ciphertexts ci,j for each building type i based on the
buildings’ contribution weights αi,j using the FedAggregate
function. Then, the aggregated ciphertext ci is delivered back
to the corresponding buildings of type i.

5) Decryption and Update: The FedDecrypt function is
applied to decrypt the aggregated ciphertext ci to obtain the
aggregated parameter ω

(r+1)
i,j , which is equal for the same i.

Then, building bi,j updates its local model parameters from
(ω

(r)
i,j )

′
to ω

(r+1)
i,j , which also represents the completion of a

round of communication.
The last four stages described above are repeated until

all communication rounds have been completed. Eventually,
buildings of the same type collaboratively train an identical
model for regulation capacity evaluation. Although the build-
ings do not share data directly and sacrifice privacy, they can
significantly enhance their model performance through this
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Fig. 3. Illustration of cross-type transfer learning algorithm.

collaboration. Furthermore, as long as there are sufficient data
in the same type of buildings, even a building with limited or
no data can obtain a comparatively accurate evaluation model.

C. Cross-type Transfer Learning Algorithm

When the overall data from the same type of buildings are
not sufficient, the proposed federated learning model may still
not achieve high performance. Thus, we propose the cross-
type transfer learning algorithm. Unlike the classified federated
learning algorithm that targets cooperation between buildings
of the same type, this algorithm synergizes models between
different building types. Specifically, according to Eq. (3), it
utilizes models from building types with better performance
to help relatively poor ones with insufficient data.

There are three main categories of transfer learning: the
instance-weighting method, feature transformation method,
and model pre-training method [28], [30], [31]. In our prob-
lem, each building only has its own data and no access to
other buildings’ data owing to security and privacy issues. The
first two transfer learning approaches cannot be used because
they need to acquire others’ data. However, different types of
buildings have the same data format and model target, and their
only differences are building types and data scales. Hence, we
employ the model pre-training method to transplant knowledge
from one type to the other, which does not need to directly
access any data from other buildings.

There are three entities involved in the algorithm: the source
building (the building with a high-performance model), the
target building (the building with a low-performance model),
and the cloud server, which is shown in Fig. 3. The general
process of the algorithm has five steps. First, the target building
initiates a request for assistance from other types of buildings.
Second, the source building encrypts and uploads its model
parameters using the Paillier cryptosystem to the cloud server.
After receiving the encrypted model parameters from the cloud
server, the target building decrypts them and replaces them as
local model parameters. Last, the target building fine-tunes the
model parameters with its own data. Fine-tuning is done to
adjust the model parameters of the source building and make
them more suitable for the target building’s task based on a

small dataset of the target building. In order to make better
use of the source building model and avoid overfitting, the
optimal fine-tuned model parameters are:

ω∗ = argmin
ω

1

|DT|

|DT|∑
t=1

L(f(xt;ω
S), yt)+β

d√
|DT|

||ω−ωS||2,

(9)
where DT is the dataset of the target building; symbol ωS

denotes the model parameters of the source building; symbol
L is the loss function of the model; symbol f(xt;ω

S) and yt
are the evaluated and true value of the t-th training data of
the target building, respectively; symbol β is a regularization
factor to be tuned; and symbol d = ||DT − DS||2 is the
discrepancy measured by the euclidean distance between the
average data of the source building and the target building.

The fine-tuned model using Eq. (9) allows the target
building to make a more accurate evaluation, which further
improves the model performance. Further, the source building
also enhances its model generalization by applying its model
to other data through transfer learning.

D. Secure Privacy-Preserving Protocol

In this part, we design a secure privacy-preserving protocol
for the proposed framework to guarantee the privacy of data
and the security of the communication processes. The Paillier
cryptosystem [32] is utilized in our protocol to ensure privacy-
preserving of the classified federated learning algorithm in
Section IV-B and the cross-type transfer learning algorithm
in Section IV-C. To effectively mitigate the malicious eaves-
droppers or other attackers, we exploit the advanced en-
cryption standard (AES) algorithm [33] to establish secure
communication channels between each building and the cloud
server. Moreover, the MD5 message-digest algorithm [34]
is used to implement authentication and tamper resistance
when transmitting messages through secure communication
channels. In addition, tags indicating building types not only
play a key role in the classified federated learning algorithm
but also assist in identity authentication. The protocol consists
of four functions and one scheme, introduced as follows.

1) KeyGenerate(): The trust authority generates the public
key PK = (n, g) and private key SK = (λ, µ) according
to the standard Paillier cryptosystem. Then, the public key
PK is made public, as is the private key SK distributed to
all buildings. The key generation process is divided into the
following three steps. First, select two random large prime
numbers p and q that satisfy gcd(pq, (p−1)(q−1)) = 1, where
gcd is the greatest common divisor. Second, calculate n = pq
and λ = lcm(p − 1, q − 1), where lcm is the least common
multiple. Then, select a random base number g ∈ Z∗

n2 as
the generator, and let µ = (L(gλ mod n2))−1 mod n. The g
can be found efficiently by checking whether gcd((L(gλ mod
n2)), n) = 1, where L(x) = x−1

n .
2) FedEncrypt(): Given a message mi,j , which represents

the model parameters of bi,j , that is, ω(r)
i,j in the corresponding

round r, select a random number z ∈ Z∗
n, 0 < z < n. Then,
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encrypt the model parameters using the public key PK and
obtain the corresponding ciphertext ci,j by

ci,j = gmi,j · zn mod n2. (10)

3) FedAggregate(): With the uploaded ciphertexts {ci,j |j ∈
Ki}, the cloud server aggregates them according to the corre-
sponding contribution weights {αi,j}. Then, the cloud server
calculates the aggregated encrypted model parameters ci by

ci =
∏

j∈Ki

(ci,j)
αi,j

=
∏

j∈Ki

(gαi,jmi,j · zαi,jn) mod n2

= g
∑

j∈Ki
αi,jmi,j ·

∏
j∈Ki

zαin mod n2.

(11)

4) FedDecrypt(): After receiving the aggregated ciphertext
ci back from the cloud server, building bi,j decrypts it with
the private key SK and obtains the aggregated parameters mi

through the following equation:

mi = L(cλi mod n2) · µ mod n

=
L(gλ

∑
j∈Ki

αi,jmi,j ·
∏

j∈Ki
zλαin mod n2)

L(gλ mod n2)
mod n

=
L(gλ

∑
j∈Ki

αi,jmi,j mod n2)

L(gλ mod n2)
mod n

=
λ ·

∑
j∈Ki

αi,j ·mi,j

λ
mod n

=
∑

j∈Ki

αi,j ·mi,j mod n.

(12)
5) Secure Transmission Scheme: The trust authority sets

up secure communication channels between each building and
the cloud server, and assigns the symmetric key si,j to both
sides of the channel. Thus, each building only has a key
for its own channel, while the cloud server has keys for all
channels. Further, the trust authority also distributes a tag
to each building, which indicates its building type. In other
words, buildings of the same type have identical tags. Note that
the cloud server also receives tags for all buildings, but they
have been processed into hash values by the MD5 algorithm.
Thus, although the cloud server does not know the exact value
of the tag, it can still use the hash value to determine the sender
of the message and whether the message has been tampered
with. The details of the protocol are shown below, and also
illustrated in Fig. 4:

(i) The building calculates the hash of its tag and splices it
in front of the ciphertext to form the valid information.

(ii) The building exploits the MD5 algorithm to generate a
digital fingerprint corresponding to its valid information
and splices it before the valid information to form the
complete information.

(iii) The building encrypts the complete information using its
symmetric key based on the AES algorithm, and then
uploads it to the cloud server through its communication
channel.

(iv) The cloud server decrypts the received content with the
symmetric key that is selected according to the channel.

(v) The cloud server generates a new digital fingerprint of

AES algorithm

MD5 algorithm

Received hash value of tag

Hash value of tag

Received digital fingerprint

Digital fingerprint

Valid message

Complete message

AES-ciphertext

Secure channel

Tag Paillier-ciphertext

Building Cloud Server

Compare

Compare

Hash value of tag
in cloud server

Fig. 4. Illustration of secure transmission scheme.

the received valid information and compares it with the
received digital fingerprint. If the two fingerprints are
the same, it justifies the valid information has not been
tampered with.

(vi) The cloud server verifies the received tag; afterward, the
comparison of the digital fingerprint is passed. If the
tag verification succeeds, it means that the ciphertext
is sent from the building corresponding to the channel.
Conversely, the ciphertext is from another building or
malicious attackers.

The Paillier cryptosystem is used to protect the privacy of
the proposed framework, enabling the server to aggregate the
building’s encrypted information without decryption. As the
Paillier cryptosystem is based on the decisional composite
residuosity assumption and cannot be cracked by the server
[32], the data privacy is protected (see the proof in Appendix
A1). Moreover, the security of the proposed framework is
guaranteed by the AES. Because AES cannot be cracked
within a limited time [35], the training-related information
cannot be obtained by third parties other than buildings and
the server (see the proof in Appendix A2).

V. CASE STUDIES

A. Experiment Settings

1) Dataset Description: The numerical experiments are
conducted on a dataset of HVAC systems in heterogeneous
buildings. Owing to the lack of historical regulation capac-
ity data, we adopt a reinforcement-learning-based simulation
method to collect and form a dataset [36], which is public on
Github1. The simulation is based on real HVAC systems and
buildings in Zhuhai, Guangdong, China (including commercial
buildings, office buildings, and hotels), and the weather data
are from the Meteorological Bureau of Zhuhai (see simulation
details in Appendix B). Each piece of data consists of 12 input
features (including physical attributes, operational status, and
environmental information) and one output (i.e., regulation
capacity), with 1-hour granularity. Because the construction

1https://github.com/KunWang-22/regulation-capacity-data

https://github.com/KunWang-22/regulation-capacity-data
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time and data collection time of buildings may be not identical,
the range of data varies from building to building, where the
longest span is 3 years, from November 2018 to October 2021.

In this paper, data insufficiency is caused by an inadequate
data range (e.g., some historical data are not collected),
especially under extreme weather conditions, when accurate
regulation capacity evaluation is more challenging. Thus, we
define a building with sufficient data, in that its data cover the
majority of historical extreme weather, while a building with
insufficient data has only historical data under a few or even
no extreme weather events.

2) Performance Metrics: The following metrics are se-
lected to measure the performance of the proposed model:

• Mean Absolute Error (MAE), MAE = 1
T

∑T
t=1|yt− ŷt|,

where yt is the prediction, ŷt is the true value, and T is
the total number of test data.

• Root Mean Square Error (RMSE), RMSE =√
1
T

∑T
t=1(yt − ŷt)2.

• Median Absolute Error (MedAE), MedAE =
median(|Y − Ŷ |), where Y = (y1, . . . , yT ),
Ŷ = (ŷ1, . . . , ŷT ), and function median(X) takes
the median of all values in X .

• Coefficient of Determination (R2), R2 = 1 −∑T
t=1(yt−ŷt)

2∑T
t=1(yt− 1

T

∑T
t=1 yi)2

.

The former three metrics describe the gaps between the
predicted and true values in [0,+∞). The last one indicates
how well the predictions approximate the real data in [0, 1]. If
the predictions perfectly fit the data, R2 = 1.

3) Scenarios and Benchmarks: To demonstrate the effec-
tiveness of the proposed method, we consider three different
scenarios.

• Scenario I: There is a building with insufficient data,
while some other buildings of the same type have suf-
ficient data.

• Scenario II: There is a new building with no historical
data, while some buildings of the same type with or
without sufficient data are similar to this new building.

• Scenario III: There is a building type of which all
buildings have insufficient data, while some buildings in
other types have sufficient data.

Because the problem of insufficient data is mainly man-
ifested as little or no building data, we believe that these
three typical scenarios can represent most occurrences of
data insufficiency. Scenarios I and II verify the classified
federated learning algorithm, while Scenario III demonstrates
the effectiveness of the cross-type transfer learning algorithm.

4) Environmental Setup: The proposed framework is im-
plemented by an open-source machine learning framework
PyTorch [37], and the communication processes are simulated
using flask2. The details of model structures and training
parameters are summarized in Table I. All of the experiments
are conducted on a desktop with Intel(R) Core(TM) i7-9700
CPU and NVIDIA GeForce RTX 2080TI GPU (64GB RAM)
on a Windows 10 Enterprise platform.

2Flask:web development framework (https://flask.palletsprojects.com)

TABLE I
IMPLEMENTATION DETAILS OF CASE STUDIES

Parameter Definition Value
layer 1 the first layer of model 12 - 641

layer 2 the second layer of model 64 - 128
layer 3 the third layer of model 128 - 64
layer 4 the fourth layer of model 64 - 16
layer 5 the fifth layer of model 16 - 1

E the number of epochs 100
B the batch size 32
L the loss function MSE

optimizer the optimization algorithm Adam
η the learning rate of optimizer 0.001

(γ1, γ2) the exponential decay rate pair (0.9, 0.999)
1Each entry of layer refers “input size - output size”.

B. Performance of Capacity Evaluation Model

In this part, we validate the performance of our proposed
framework in the aforementioned three scenarios. For the
comprehensive validation, in every scenario, we construct
50 cases of insufficient data for each type of building (i.e.,
commercial building, office building, and hotel), where each
type of case involves different buildings and different days.
The following five benchmarks are selected for comparison
with our proposed method, all of which use MLPs as the
evaluation model, as in the proposed method.

• Benchmark A: The model for the objective building in
Scenario I is trained based on its own insufficient data.

• Benchmark B: The model for the objective building in
Scenario II is trained by a similar building with insuffi-
cient data.

• Benchmark C: The model for the objective building in
Scenario II is trained by a similar building with sufficient
data.

• Benchmark D: The model for the objective building in
Scenario III is trained by the federated learning algorithm
using all the data from all of the buildings of the same
type.

• Benchmark E: The model for the objective building in
Scenario III is trained by the federated learning algorithm
using all the data from all of the buildings of the same
type and other types with sufficient data.

We compare the evaluation performance of the proposed
method on 450 problem instances in each scenario with
benchmarks, and the statistical results are summarized in Table
II. It can be seen that the proposed method outperforms the
corresponding benchmarks on all of the evaluation metrics
regardless of the scenario. From the perspective of evaluation
error, the average MAE, RMSE, and MedAE of the proposed
method are at least roughly halved compared to the bench-
marks, with a maximum reduction of more than 400 kW.
Moreover, the standard deviations of error metrics in the pro-
posed method are mostly controlled within 10, while those in
the benchmarks are distributed between 10 and 450. Therefore,
the proposed method not only has accurate evaluation results,
but also the evaluation performance is stable, which indicates
that it can effectively solve the problem of insufficient data.
As for the R2 value, the standard deviation of the proposed

https://flask.palletsprojects.com
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TABLE II
PERFORMANCE OF OVERALL SITUATION

Scenario Method MAE (kW) RMSE (kW) MedAE (kW) R2

Scenario I Benchmark A 483.519 (45.157) 583.648 (35.254) 420.682 (33.823) 0.0011 (0.0003)
Proposed 135.865 (9.518) 178.065 (10.228) 93.448 (7.904) 0.725 (0.022)

Scenario II
Benchmark B 306.119 (13.312) 427.211 (22.139) 173.740 (16.622) 0.0012 (0.0003)
Benchmark C 158.806 (9.566) 208.656 (11.365) 153.563 (9.209) 0.796 (0.056)

Proposed 81.184 (7.568) 95.068 (6.625) 77.872 (4.835) 0.958 (0.013)

Scenario III
Benchmark D 264.111 (17.606) 357.828 (15.942) 177.295 (17.705) 0.739 (0.048)
Benchmark E 255.101 (17.508) 350.520 (15.021) 172.244 (13.529) 0.741 (0.049)

Proposed 103.094 (5.417) 155.03 (9.651) 61.333 (3.876) 0.941 (0.016)
*Each entry gives a pair of AVG. (STD.).

method is also lower than that of the benchmarks, except for
benchmarks A and B, because their R2 values are small and
close to zero. In scenarios B and C, the average R2 values of
the proposed method also exceed 0.9, which indicates that the
proposed method can effectively fit the regulation capacity of
HVAC systems in buildings and make an accurate evaluation.

To demonstrate the evaluation details, we randomly select
one instance from each scenario for a more intuitive and clear
comparison, as follows.

1) Scenario I - insufficient data for one building: In this
scenario, we validate the performance of the proposed model
when a building has insufficient data. Fig. 5 shows the
evaluation results and performance of 1 week in scenario I
utilizing benchmark A and the proposed model, respectively.

It is clear that benchmark A has poor evaluation accuracy,
with a maximum error up to 1000 kW (see Fig. 5(a)). This
is because this building does not have sufficient data to
confront the sudden drop in regulation capacity under extreme
weather conditions, and its data does not cover the majority
of historical extreme weather, while that of other buildings
do. In contrast, our proposed method can identify extreme
weather conditions and significantly improve the evaluation
performance. This results in a reduction of the maximum
error rate by nearly 60%. The problem of insufficient data
is addressed by data from other buildings of the same type. In
Fig. 5(b), for the model developed by our proposed method,
the MAE, RMSE, and MedAE metrics decrease from 472.37,
577.44, and 423.58 to 103.04, 141.33, and 77.82, respectively,
which indicates a distinct improvement in model performance.
In addition, the value of R2 increases from 0.01 to 0.85, im-
plying a boost in evaluation performance due to the classified
federated learning algorithm.

2) Scenario II - no data for one building: In this scenario,
we target the building without any data, which cannot train
the model at all. Likewise, the proposed method tackles this
kind of data deficiency using data from other same-type
buildings. The evaluation results and the performance metrics
of benchmark B, Benchmark C, and the proposed method in
scenario II are shown in Fig. 6.

Although benchmark B trains the target model based on the
data of a similar building, it still has large regulation capacity
evaluation errors; for example, benchmark B’s RMSE reaches
up to 438.12. This is because the data of the similar building
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Fig. 5. Evaluation result and performance metric of capacity evaluation
models under scenario I.

it used are insufficient. In comparison, benchmark C trains the
target model based on a similar building with sufficient data.
Its evaluation accuracy is significantly enhanced; for example,
its RMSE is reduced to 212.48. This performance difference
is more notable under extreme weather conditions that are
learned by benchmark C but not benchmark B. However,
because benchmark C only utilizes one building’s data, its
model still has significant errors. In contrast, the proposed
method exploits a large amount of data from buildings of the
same type so that it can accurately evaluate the regulation
capacity in the new building. The three error metrics of
the proposed model are all reduced to within 100, which is
significantly lower than those of the other two benchmarks.
Meanwhile, the R2 of the above three models is 0.01, 0.77,
and 0.95, respectively, indicating that the model has been
remarkably enhanced through our proposed method.

3) Scenario III - insufficient data for all buildings in one
type: In this scenario, even all of the data from one type of
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Fig. 6. Evaluation result and performance metric of capacity evaluation
models under scenario II.

buildings are not enough to train a high-performance model.
Unlike the previous two scenarios, we tackle this form of
data insufficiency with the help of data from other types of
buildings. The evaluation results and the performance metrics
of benchmark D, benchmark E, and the proposed method in
scenario III are shown in Fig. 7.

Benchmark D can identify extreme weather owing to sim-
ilar weather conditions in some data from other same-type
buildings. However, there is a drift in the evaluation; that is,
the estimated maximum capacity appears several hours later
than the corresponding real value, resulting in its MAE of
255.05. Although benchmark E has utilized a massive amount
of data from buildings of other types, its performance is only
marginally enhanced compared with benchmark D. The two
benchmarks’ MAE, RMSE, MedAE metrics, and R2 value
are all close. In contrast, the model of the proposed method,
which has been pre-trained by the source buildings and fine-
tuned by the target building, outperforms the two benchmarks
D and E significantly, with distinct progress in each metric.
Additionally, its R2 value reaches 0.95, indicating that the
evaluations fit the real capacities well. This proves that our
proposed method can address the data deficiency problem by
utilizing data from different types of buildings with the help
of the cross-type transfer learning algorithm.

C. Performance Comparison with Existing Methods

In this subsection, we further verify the performance of our
proposed framework by comparing it with existing state-of-
the-art methods. Because there are few data-driven models
for regulation capacity evaluation in existing studies and
the regulation capacity evaluation can also be treated as a
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Fig. 7. Evaluation result and performance metric of capacity evaluation
models under scenario III.

regression problem, we select some regression models in the
load forecasting field as benchmarks, as follows.

• Benchmark F1: an unshared convolutional neural network
(CNN) proposed by Li et al. [38] for both deterministic
and interval load forecasting.

• Benchmark F2: a grey wolf optimizer-based CNN pro-
posed by Jalali et al. [39] for electricity load forecasting.

• Benchmark F3: a stacked long-short term memory
(LSTM) network proposed by Li et al. [40] to predict
the HVAC consumption in buildings.

• Benchmark F4: a hybrid forecasting model based on the
temporal convolution network (TCN) and light gradient
boosting machine (LightGBM) proposed by Wang et al.
[41] for industrial load forecasting.

We compare the proposed method with the above four
benchmarks in three scenarios, and the results are shown in
Table III. It can be observed that the model performance of
the four benchmarks is enhanced to some extent compared
to MLPs because the benchmarks are all improved for re-
gression tasks, e.g., unshared CNN, grey wolf optimizer, and
TCN. However, because of the insufficient data problem, the
evaluation results in the three scenarios are still not good
enough; where the maximum error is close to 400 kW, and the
minimum error is still over 100 kW. In contrast, although the
proposed method only uses the multi-layer perceptron as the
evaluation model, its evaluation performance far outperforms
all the benchmarks in each scenario because it addresses the
data deficiency via the classified federated learning algorithm
and the cross-type transfer learning algorithm. For example,
the evaluation error of the proposed method in Scenario I
is reduced by at least 90 kW compared to the benchmarks,
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TABLE III
PERFORMANCE COMPARISON WITH EXISTING METHODS

Scenario Metric Benchmark F1 Benchmark F2 Benchmark F3 Benchmark F4 Proposed

Scenario I

MAE 338.731 (28.076) 305.299 (23.862) 269.954 (20.421) 225.304 (17.719) 130.901 (9.209)
RMSE 370.933 (25.057) 346.879 (23.272) 290.869 (16.902) 280.470 (15.426) 174.023 (9.839)
MedAE 306.491 (23.189) 260.025 (19.338) 203.411 (15.095) 183.534 (13.387) 91.885 (7.129)
R2 0.127 (0.043) 0.242 (0.040) 0.336 (0.038) 0.414 (0.036) 0.779 (0.029)

Scenario II

MAE 221.035 (11.250) 215.623 (10.599) 209.247 (10.105) 202.132 (9.901) 83.568 (7.558)
RMSE 285.327 (12.592) 264.185 (11.371) 220.259 (10.983) 193.753 (10.326) 97.910 (6.018)
MedAE 143.064 (8.514) 122.414 (8.212) 115.075 (7.775) 103.949 (7.322) 79.431 (4.512)
R2 0.479 (0.026) 0.523 (0.027) 0.652 (0.028) 0.724 (0.022) 0.950 (0.013)

Scenario III

MAE 284.392 (17.381) 256.010 (16.202) 222.082 (12.763) 196.641 (9.957) 101.389 (5.145)
RMSE 305.447 (13.920) 273.469 (12.865) 240.933 (12.421) 218.845 (11.621) 151.463 (9.237)
MedAE 240.820 (20.248) 201.015 (18.454) 168.479 (14.080) 116.079 (11.486) 59.307 (3.249)
R2 0.411 (0.028) 0.503 (0.027) 0.549 (0.025) 0.696 (0.023) 0.951 (0.018)

*MAE, RMSE and MedAE are all in kilowatts(kW), and each entry gives a pair of AVG. (STD.).

TABLE IV
THE TIMELINESS OF THE PROPOSED METHOD

Method Training time (sec) Inference time (sec)
Benchmark F1 1465.39 0.001005
Benchmark F2 1383.91 0.001013
Benchmark F3 1774.28 0.000969
Benchmark F4 1146.56 0.000997

Proposed 2298.54 0.000958

nearly 40%. In Scenario II, the R2 value of our method is
more than 30% higher than the best benchmark, and the three
error metrics are also decreased by about 30 kW on average.
Similarly, in Scenario III, the R2 value is also increased by
0.255 (over 35%), and the MAE, RMSE, and MedAE are all
been reduced by almost half. These experiments prove the
superiority of the proposed method compared with other the
state-of-the-art methods.

The average training and inference time of the proposed
method are also compared with the four benchmarks. Table
IV shows that the training time of the proposed method is
significantly longer than the other four benchmarks. This is
because the encryption and decryption operations are involved
in our proposed method. However, the data-driven model is
usually trained offline and is not be deployed until the training
has been completed. After training, it can be used for a period
of time. Therefore, even if the training time of our method is
long, the speed of evaluation is not reduced and the timeliness
in the actual application is not affected. This can be seen in
the inference time, which is around 1 millisecond for both
our method and the four benchmarks. Considering that we
mainly focus on 1-hour-ahead regulation capacity evaluation,
the inference time is almost negligible, which verifies that our
method is timely and does not affect efficiency in application.

D. Performance Comparison with Local and Ideal Models

In this part, we compare the performances of the proposed
method with local models and ideal models. The local models
are trained by individual buildings using their own data, while
the ideal models are trained via the traditional centralized way,

which gathers all of the data in a central server and trains a
model using all of the data. Note that the ideal model is still
a data-driven model rather than an actual load model so it
still inevitably has evaluation errors. As our proposed method
is based on the federated learning, its performance should be
close to the corresponding ideal model [18].

Table V summarizes the performance of the three types of
models in terms of MAE, RMSE, MedAE, and R2 under the
three scenarios I, II, and III. It is clear that the proposed
method outperforms the local models in all aspects and
scenarios. The three error metrics are reduced by 62% on
average and the average R2 is raised from 0.226 to 0.893. The
performance of our proposed method is also close to that of
the ideal models, as the metric differences between these two
models are negligible. In Scenario III, the performance of our
method even exceeds that of the ideal model. Because the ideal
model is still a data-driven model, and the performance of the
proposed method is close to the ideal model, it is reasonable
that the proposed method outperforms the ideal model in some
cases, especially when the test data significantly differ from the
training data. Therefore, our model satisfies the losslessness
within the acceptable range.

Fig. 8 shows the average training loss of the aforementioned
three types of models in the three scenarios. It can be seen
that the convergence of our proposed method and the ideal
model is approximately identical, which further proves the

TABLE V
NUMERICAL RESULTS OF THE LOCAL MODEL, THE IDEAL MODEL, AND

THE PROPOSED METHOD

Local model Proposed Ideal model

Scenario I

MAE 449.162 135.865 133.853
RMSE 558.463 178.065 175.991
MedAE 397.837 93.448 91.889
R2 0.001 0.725 0.727

Scenario II

MAE 236.697 81.184 79.845
RMSE 325.299 95.068 94.582
MedAE 167.739 77.872 76.058
R2 0.383 0.958 0.959

Scenario III

MAE 375.923 103.094 103.535
RMSE 423.171 155.032 156.387
MedAE 309.414 61.333 63.138
R2 0.295 0.941 0.940

∗MAE, RMSE and MedAE are all in kilowatts(kW)
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Fig. 8. Training loss of the three models.

losslessness of the proposed method. Although our proposed
method adopts the classified federated learning algorithm to
preserve the privacy of data, it still has a high performance
close to that of the ideal model. As for the local model,
although the training loss is the lowest, its numerical results
are inferior to the other two models. This may be because
of insufficient training data, resulting in the overfitting of the
model.

VI. CONCLUSION

In this paper, we studied the regulation capacity evaluation
problem of HVAC systems in heterogeneous buildings, which
is hard to solve through physical-based and traditional cen-
tralized data-driven methods. We proposed a deep learning
framework that consisted of classified federated learning,
cross-type transfer learning, and the secure privacy-preserving
protocol. This framework can perform accurate regulation ca-
pacity evaluation by addressing data insufficiency through the
collaboration of buildings without compromising privacy. Case
studies under three scenarios demonstrate that our proposed
framework has high regulation capacity evaluation accuracy
and generalization, even when building data are not sufficient
or unavailable. The average estimation error of the proposed
framework is decreased by 77%, 49% and 64% in three
scenarios. Through a comparison with existing state-of-the-art
methods, the R2 value of the proposed framework increases
by at least 50% on average, where the effectiveness and
superiority have been further validated. In addition, the results
indicate that the performance and efficiency of our method are
close to the centralized method. The differences between the
two methods in estimation error and training loss are within
only 2kW and 0.0024kW, respectively. Although the secure
privacy-preserving protocol has no impact on the accuracy of
the proposed framework because it only protects data privacy
and security, it is necessary because it avoids data leakage and
makes collaborative training possible.

In this paper, we used the Paillier cryptosystem to encrypt
sensitive data, and completed the information exchange by
communicating with the server. Although data privacy was
protected, the designed protocol also increased the computa-
tional burden and time consumption. In future work, we intend
to reduce the computational cost of the cryptosystem, and
improve the interaction processes of the transmission scheme,
which makes the proposed method more secure and efficient in
practical applications. Moreover, we focused on the regulation

capacity evaluation in this paper, and the use of evaluation
values during real-time operations was usually regarded as the
market bidding or operation issue. Because different electricity
markets had different policies on the regulation reward and
punishment mechanism, it was necessary for the aggregator
to bid or operate strategically, which is an important research
topic and will also be our future work.

APPENDIX

A. Security and Privacy Proof

1) Privacy: The Paillier algorithm is used to ensure user
privacy, and the objective is that the adversary cannot drive the
corresponding plaintext even if they obtain the ciphertext [32].
This is also an asymmetric encryption algorithm in which the
user utilizes the public key for encryption and the private key
for decryption. Because the adversary can obtain the public
key that is open to anyone, the attack model is the chosen-
plaintext attack, which presumes that the attacker can obtain
the ciphertexts for arbitrary plaintexts using the public key
[42]. The adversary hopes to use these ciphertexts to crack
the user’s ciphertext and obtain the user’s plaintext; thus, the
user’s privacy is compromised.

In this paper, the parameters of the user local model were
encrypted using the Paillier algorithm, and the calculation
process is as follows:

c = gm · rn mod n2,

where m and c are the plaintext and the ciphertext, respec-
tively; g and n form the public key (n, g); and n = p · q,
where p and q are large primes.

Therefore, the chosen-plaintext attack process for this al-
gorithm was that the adversary constructed a set of plain-
text ciphertext pairs {(mi, ci)}, intended to match the user’s
plaintext ciphertext pairs (m, c), and thus infered the plaintext
of the user. We could reduce this attack to a mathematical
problem. Given a composite n and an integer z, we can decides
whether z is an n-th residue modulo n2, that is, whether there
exists a y such that:

z = yn mod n2.

This problem is also regraded as the problem of deciding the
n-th residuosity, which distinguishes the n-th residues from the
non n-th residues. Similar to the problem of deciding quadratic
or higher-degree residuosity [43], the problem of deciding the
n-th residuosity is a random-self-reducible problem whereby
all of its instances are polynomially equivalent, so this problem
is either uniformly intractable or uniformly polynomial [44].
In addition, the problem of deciding the n-th residuosity is
computationally hard for prime residuosity [45]. Because we
choose a square number n2 as modulus and n = p · q,
there exists no polynomial time distinguisher for the n-th
residues modulo n2; that is, the above mathematical problem
is intractable [46]. Therefore, the Paillier algorithm achieves
indistinguishability under the chosen-plaintext attack, in that
the ciphertext does not leak any information in the plaintext,
also known as semantic security [47].
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TABLE VI
CHARACTERISTICS OF BUILDING TYPES

Commercial building Office building Hotel

Building structure
floor area (m2) 10000 ∼ 30000 2500 ∼ 8000 1000 ∼ 5000
floor height (m) 6 4 3
number of floors 4 ∼ 10 20 ∼ 60 10 ∼ 30

Social activity
opening time (hour) 13

(9 a.m. ∼ 10 p.m.)
10

(8 a.m. ∼ 6 p.m.) 24

foot traffic (person/day) 5000 ∼ 20000 2500 ∼ 5000 500 ∼ 2000
cooling temperature (◦C) ≈ 20 20 ∼ 24 ≥ 24

Load pattern
load range (MW) 5 ∼ 7 6 ∼ 8 3 ∼ 5

peak number 1 1 2
load periodicity weekend/holiday ascend weekend/holiday descend weekend/holiday ascend

2) Security: The AES algorithm is used to protect commu-
nication security, and the objective is to prevent the adversary
from deriving plaintext from ciphertext [33]. The difference is
that the AES algorithm is a symmetric encryption algorithm
where the user exploits the same key for encryption and
decryption, and the key is a top secret. The AES algorithm
involves four kinds of operations: byte substitution, row shift,
column mixture, and round-key addition. The sequence of
all processes in encryption and decryption are exactly the
opposite, which ensures that the decryption operation can
restore the plaintext from ciphertext completely and correctly.

In this paper, because the adversary cannot obtain the key,
the brute force method is usually adopted, which calculates
each possible combination of the password and tests whether
it is the correct password. However, the time complexity of
this approach exponentially increases with the key length, that
is, the bits of the key [48]. Take the AES-128 (i.e., the key
length is 128 bits) algorithm as an example; 2127 attempts are
required on average. Even using the computing resources of
the Bitcoin network (around 3 ∗ 1019 operations per second),
it would approximately take a staggering 200 billion years to
crack, yet the Big Bang only occurred an estimated 13.8 billion
years ago. Moreover,it would cost over 107 trillion dollars to
crack AES-128, while the global GDP is less than 100 trillion
dollars a year. Thus, in terms of time complexity and economic
cost, it is almost impossible to crack the AES algorithm [49].

B. Building Characteristics and HVAC System Simulation

In this paper, we defined building types according to the way
buildings were used, including office buildings, commercial
buildings, and hotels. We separated commercial buildings from
hotels because of their different building structures and uses,
resulting in significant differences in load patterns and regu-
lation capacities. The characteristics of the different building
types are summarized in Table VI.

Because we focused on evaluating the regulation capacity
of HVAC systems in buildings, we simulated the operation of
HVAC systems and record the corresponding data for training
and testing. The HVAC system converted energy between
water and wind, thereby controlling the indoor temperature
through cold wind. The details of thermal dynamic processes
are described below [50], [51].

The power consumption of HVAC systems can be calculated
based on the energy and mass balance, as follows:

P hvac
t = Qhvac

t /COP,

where P hvac
t and Qhvac

t are the electrical power and cooling
power of the HVAC system at time t, respectively, both in kW;
COP denotes the HVAC system’s coefficient of performance.

The Qhvac
t is determined by the HVAC system’s return water

temperature, as follows:

Qhvac
t = cwater ·mwater

t · (Twater,r
t − Twater,s

t ),

where cwater is the specific heat capacity of water, in kJ/(kg
·◦C); mwater

t is the instantaneous mass flow rate of water
at time t, in kg/s; T water,r

t and Twater,s
t denote the return

water temperature and supply water temperature of the HVAC
system at time t, respectively.

The HVAC system adjusts the indoor temperature by pro-
viding cooling wind, and the return wind temperature can be
calculated by

Twind,r
t = (1− α) · T in

t + α · T out
t ,

where Twind,r
t is the return wind temperature at time t; T in

t and
T out
t denote the indoor temperature and outdoor temperature

of the building at time t, respectively; and α is the ventilation
coefficient, which is 0 when there is no air exchange.

The cooling power of the supply wind comes from the
cooling power of the HVAC system, and there are some losses
during energy transfer. The supply wind temperature can be
calculated from the energy of the cold air and the return air
temperature, expressed as

Qwind
t = η1 ·Qhvac

t ,

Qwind
t = cair ·mwind

t · (Twind,r
t − Twind,s

t ),

where Qwind
t is the cooling power of the supply wind at time

t; η1 is the transfer efficiency coefficient of an HVAC system
to the air-handling unit; cair is the specific heat capacity of
air; mwind

t is the instantaneous mass flow rate of wind at
time t; Twind,r

t and Twind,s
t denote the return wind temperature

and supply wind temperature of the HVAC system at time t,
respectively.

Then, the indoor thermal dynamic is described as

cair ·ρ·V · dT
in

dt
= U ·A·(T in

t −T out
t )−η2 ·Qwind+ξ ·(T in

t −T out
t ),
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where ρ is the density of the air, in kg/m3; V and A denote
the volume and surface area of the building in m3 and m2,
respectively; U is the heat transfer coefficient of the building,
in kW/(m2 ·◦ C); η2 is the transfer efficiency coefficient of
air handling unit to indoor air; and ξ denotes the heat loss
coefficient.

According to the change of indoor temperature, the PID
controller adjusts the mass flow rate of wind at the next time
and controls the subsequent temperature variation, which can
be expressed as

mwind
t+1 = PID(T in

t − T set),

where mwind
t+1 is the instantaneous mass flow rate of wind at

time t+ 1; PID(·) is the PID controller; and T set denotes the
setting temperature of the HVAC system.
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